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Precise and efficient genome targeting technologies are needed to enable 
systematic reverse engineering of causal genetic variations by allowing 
selective perturbation of individual genetic elements. Although genome-
editing technologies such as designer zinc fingers (ZFs) (1–4), transcrip-
tion activator-like effectors (TALEs) (4–10), and homing meganucleases 
(11) have begun to enable targeted genome modifications, there remains 
a need for new technologies that are scalable, affordable, and easy to 
engineer. Here, we report the development of a new class of precision 
genome engineering tools based on the RNA-guided Cas9 nuclease (12–
14) from the type II prokaryotic CRISPR adaptive immune system (15–
18). 

The Streptococcus pyogenes SF370 type II CRISPR locus consists of 
four genes, including the Cas9 nuclease, as well as two non-coding 
RNAs: tracrRNA and a pre-crRNA array containing nuclease guide se-
quences (spacers) interspaced by identical direct repeats (DRs) (Fig. S1) 
(19). We sought to harness this prokaryotic RNA-programmable nucle-
ase system to introduce targeted double stranded breaks (DSBs) in 
mammalian chromosomes through heterologous expression of the key 
components. It has been previously shown that expression of tracrRNA, 
pre-crRNA, host factor RNase III, and Cas9 nuclease are necessary and 
sufficient for cleavage of DNA in vitro (12, 13) and in prokaryotic cells 
(20, 21). We codon optimized the S. pyogenes Cas9 (SpCas9) and RNase 
III (SpRNase III) and attached nuclear localization signals (NLS) to en-
sure nuclear compartmentalization in mammalian cells. Expression of 
these constructs in human 293FT cells revealed that two NLSs are most 
efficient at targeting SpCas9 to the nucleus (Fig. 1A). To reconstitute the 

non-coding RNA components of 
CRISPR, we expressed an 89-
nucleotide (nt) tracrRNA (Fig. S2) 
under the RNA polymerase III U6 
promoter (Fig. 1B). Similarly, we used 
the U6 promoter to drive the expres-
sion of a pre-crRNA array comprising 
a single guide spacer flanked by DRs 
(Fig. 1B). We designed our initial 
spacer to target a 30-basepair (bp) site 
(protospacer) in the human EMX1 
locus that precedes an NGG, the requi-
site protospacer adjacent motif (PAM) 
(Fig. 1C and fig. S1) (22, 23). 

To test whether heterologous ex-
pression of the CRISPR system 
(SpCas9, SpRNase III, tracrRNA, and 
pre-crRNA) can achieve targeted 
cleavage of mammalian chromosomes, 
we transfected 293FT cells with differ-
ent combinations of CRISPR compo-
nents. Since DSBs in mammalian DNA 
are partially repaired by the indel-
forming non-homologous end joining 
(NHEJ) pathway, we used the 
SURVEYOR assay (Fig. S3) to detect 
endogenous target cleavage (Fig. 1D 
and fig. S2B). Co-transfection of all 
four required CRISPR components 
resulted in efficient cleavage of the 
protospacer (Fig. 1D and fig. S2B), 
which is subsequently verified by 
Sanger sequencing (Fig. 1E). Interest-
ingly, SpRNase III was not necessary 
for cleavage of the protospacer (Fig. 
1D), and the 89-nt tracrRNA is pro-
cessed in its absence (Fig. S2C). Simi-

larly, maturation of pre-crRNA does not require RNase III (Fig. 1D and 
fig. S4), suggesting that there may be endogenous mammalian RNases 
that assist in pre-crRNA maturation (24–26). Removing any of the re-
maining RNA or Cas9 components abolished the genome cleavage activ-
ity of the CRISPR system (Fig. 1D). These results define a minimal 
three-component system for efficient CRISPR-mediated genome modifi-
cation in mammalian cells. 

Next, we explored the generalizability of CRISPR-mediated cleav-
age in eukaryotic cells by targeting additional protospacers within the 
EMX1 locus (Fig. 2A). To improve co-delivery, we designed an expres-
sion vector to drive both pre-crRNA and SpCas9 (Fig. S5). In parallel, 
we adapted a chimeric crRNA-tracrRNA hybrid (Fig. 2B, top) design 
recently validated in vitro (12), where a mature crRNA is fused to a 
partial tracrRNA via a synthetic stem-loop to mimic the natural 
crRNA:tracrRNA duplex (Fig. 2B, bottom). We observed cleavage of all 
protospacer targets when SpCas9 is co-expressed with pre-crRNA (DR-
spacer-DR) and tracrRNA. However, not all chimeric RNA designs 
could facilitate cleavage of their genomic targets (Fig. 2C, Table S1). 
We then tested targeting of additional genomic loci in both human and 
mouse cells by designing pre-crRNAs and chimeric RNAs targeting the 
human PVALB and the mouse Th loci (Fig. S6). We achieved efficient 
modification at all three mouse Th and one PVALB targets using the 
crRNA:tracrRNA design, thus demonstrating the broad applicability of 
the CRISPR system in modifying different loci across multiple organ-
isms (Table S1). For the same protospacer targets, cleavage efficiencies 
of chimeric RNAs were either lower than those of crRNA:tracrRNA 
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Functional elucidation of causal genetic variants and elements requires precise 
genome editing technologies. The type II prokaryotic CRISPR (clustered regularly 
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cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-
directed repair with minimal mutagenic activity. Finally, multiple guide sequences 
can be encoded into a single CRISPR array to enable simultaneous editing of 
several sites within the mammalian genome, demonstrating easy programmability 
and wide applicability of the CRISPR technology. 
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duplexes or undetectable. This may be due to differences in the expres-
sion and stability of RNAs, degradation by endogenous RNAi machin-
ery, or secondary structures leading to inefficient Cas9 loading or target 
recognition. 

Effective genome editing requires that nucleases target specific ge-
nomic loci with both high precision and efficiency. To investigate the 
specificity of CRISPR-mediated cleavage, we analyzed single-nucleotide 
mismatches between the spacer and its mammalian protospacer target 
(Fig. 3A). We observed that single-base mismatch up to 12-bp 5′ of the 
PAM completely abolished genomic cleavage by SpCas9, whereas spac-
ers with mutations farther upstream retained activity against the 
protospacer target (Fig. 3B). This is consistent with previous bacterial 
and in vitro studies of Cas9 specificity (12, 20). Furthermore, CRISPR is 
able to mediate genomic cleavage as efficiently as a pair of TALE nu-
cleases (TALEN) targeting the same EMX1 protospacer (Fig. 3, C and 
D). 

Targeted modification of genomes ideally avoids mutations arising 
from the error-prone NHEJ mechanism. The wild-type SpCas9 is able to 
mediate site-specific DSBs, which can be repaired through either NHEJ 
or homology-directed repair (HDR). We engineered an aspartate-to-
alanine substitution (D10A) in the RuvC I domain of SpCas9 to convert 
the nuclease into a DNA nickase (SpCas9n, Fig. 4A) (12, 13, 20), be-
cause nicked genomic DNA is typically repaired either seamlessly or 
through high-fidelity HDR. SURVEYOR (Fig. 4B) and sequencing of 
327 amplicons did not detect any indels induced by SpCas9n. However, 
it is worth noting that nicked DNA can in rare cases be processed via a 
DSB intermediate and result in a NHEJ event (27). We then tested Cas9-
mediated HDR at the same EMX1 locus with a homology repair template 
to introduce a pair of restriction sites near the protospacer (Fig. 4C). 
SpCas9 and SpCas9n catalyzed integration of the repair template into 
EMX1 locus at similar levels (Fig. 4D), which we further verified via 
Sanger sequencing (Fig. 4E). These results demonstrate the utility of 
CRISPR for facilitating targeted genomic insertions. Given the 14-bp 
(12-bp from the seed sequence and 2-bp from PAM) target specificity 
(Fig. 3B) of the wild type SpCas9, the use of a nickase may reduce off-
target mutations. 

Finally, the natural architecture of CRISPR loci with arrayed spacers 
(Fig. S1) suggests the possibility of multiplexed genome engineering. 
Using a single CRISPR array encoding a pair of EMX1- and PVALB-
targeting spacers, we detected efficient cleavage at both loci (Fig. 4F). 
We further tested targeted deletion of larger genomic regions through 
concurrent DSBs using spacers against two targets within EMX1 spaced 
by 119-bp, and observed a 1.6% deletion efficacy (3 out of 182 
amplicons; Fig. 4G), thus demonstrating the CRISPR system can medi-
ate multiplexed editing within a single genome. 

The ability to use RNA to program sequence-specific DNA cleavage 
defines a new class of genome engineering tools. Here, we have shown 
that the S. pyogenes CRISPR system can be heterologously reconstituted 
in mammalian cells to facilitate efficient genome editing; an accompany-
ing study has independently confirmed high efficiency CRISPR-
mediated genome targeting in several human cell lines (28). However, 
several aspects of the CRISPR system can be further improved to in-
crease its efficiency and versatility. The requirement for an NGG PAM 
restricts the S. pyogenes CRISPR target space to every 8-bp on average 
in the human genome (Fig. S7), not accounting for potential constraints 
posed by crRNA secondary structure or genomic accessibility due to 
chromatin and DNA methylation states. Some of these restrictions may 
be overcome by exploiting the family of Cas9 enzymes and its differing 
PAM requirements (22, 23) across the microbial diversity (17). Indeed, 
other CRISPR loci are likely to be transplantable into mammalian cells; 
for example, the Streptococcus thermophilus LMD-9 CRISPR1 can also 
mediate mammalian genome cleavage (Fig. S8). Finally, the ability to 
carry out multiplex genome editing in mammalian cells enables powerful 

applications across basic science, biotechnology, and medicine (29). 
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 Fig. 1. The Type II CRISPR locus from Streptococcus pyogenes SF370 can be reconstituted in mammalian cells to 
facilitate targeted DSBs of DNA. (A) Engineering of SpCas9 and SpRNase III with NLSs enables import into the 
mammalian nucleus. (B) Mammalian expression of SpCas9 and SpRNase III are driven by the EF1a promoter, 
whereas tracrRNA and pre-crRNA array (DR-Spacer-DR) are driven by the U6 promoter. A protospacer (blue 
highlight) from the human EMX1 locus with PAM is used as template for the spacer in the pre-crRNA array. (C) 
Schematic representation of base pairing between target locus and EMX1-targeting crRNA. Red arrow indicates 
putative cleavage site. (D) SURVEYOR assay for SpCas9-mediated indels. (E) An example chromatogram showing a 
micro-deletion, as well as representative sequences of mutated alleles identified from 187 clonal amplicons. Red 
dashes, deleted bases; red bases, insertions or mutations. Scale bar = 10μm. 
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Fig. 2. SpCas9 can be reprogrammed to target multiple genomic loci in mammalian cells. (A) Schematic of the human 
EMX1 locus showing the location of five protospacers, indicated by blue lines with corresponding PAM in magenta. (B) 
Schematic of the pre-crRNA/tracrRNA complex (top) showing hybridization between the direct repeat (gray) region of the 
pre-crRNA and tracrRNA. Schematic of a chimeric RNA design (12) (bottom). tracrRNA sequence is shown in red and 
the 20bp spacer sequence in blue. (C) SURVEYOR assay comparing the efficacy of Cas9-mediated cleavage at five 
protospacers in the human EMX1 locus. Each protospacer is targeted using either processed pre-crRNA:tracrRNA 
complex (crRNA) or chimeric RNA (chiRNA). 
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Fig. 3. Evaluation of the SpCas9 specificity and comparison 
of efficiency with TALENs. (A) EMX1-targeting chimeric 
crRNAs with single point mutations were generated to 
evaluate the effects of spacer-protospacer mismatches. (B) 
SURVEYOR assay comparing the cleavage efficiency of 
different mutant chimeric RNAs. (C) Schematic showing the 
design of TALENs targeting EMX1. (D) SURVEYOR gel 
comparing the efficiency of TALEN and SpCas9 (N = 3). 
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Fig. 4. Applications of Cas9 for homologous recombination and multiplex genome engineering. (A) 
Mutation of the RuvC I domain converts Cas9 into a nicking enzyme (SpCas9n) (B) Co-expression of 
EMX1-targeting chimeric RNA with SpCas9 leads to indels, whereas SpCas9n does not (N = 3). (C) 
Schematic representation of the recombination strategy. A repair template is designed to insert 
restriction sites into EMX1 locus. Primers used to amplify the modified region are shown as red arrows. 
(D) Restriction fragments length polymorphism gel analysis. Arrows indicate fragments generated by 
HindIII digestion. (E) Example chromatogram showing successful recombination. (F) SpCas9 can 
facilitate multiplex genome modification using a crRNA array containing two spacers targeting EMX1 
and PVALB. Schematic showing the design of the crRNA array (top). Both spacers mediate efficient 
protospacer cleavage (bottom). (G) SpCas9 can be used to achieve precise genomic deletion. Two 
spacers targeting EMX1 (top) mediated a 118bp genomic deletion (bottom). 
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