
Figure 8. Histology of femurs from FL and KO mice. Masson’s Trichrome staining of bones in male and female OGR1 FL and KO mice. Nuclei
were stained black, cytoplasm was red, muscle fibers were red, and collagen was blue. Scale bar = 100mm.
doi:10.1371/journal.pone.0005705.g008
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the functions/signaling pathways of this family of GPCRs fromin
vitroover-expression systems are not completely consistent with the
results obtained from knockout mice as described above,
emphasizing the importance to study the pathophysiological roles
of these receptorsin vivoand the potential redundant functions
among OGR1 subfamily GPCRs.

The potential involvement of OGR1 in BAT and
macrophages were mouse genetic background-
dependent

We have found that the cell types affected by OGR1 in the
mixed or the C57/BL6 background are all potentially derived
from mesenchymal stem cells (MSCs) or hematopoietic stem cells

from bone marrow, which are capable of differentiating into
monocytes, osteoclasts, osteoblasts, and adipocytes, among other
cell phenotypes. We consistently found higher accumulations of
BAT both in terms of dimension and weight in OGR1 KO mice in
the mixed background. However, these differences disappeared
when mice were in the C57/BL6 background, suggesting that a
modifying gene(s) in different mouse background may play a role
in regulating BAT. To our knowledge, OGR1 is the first gene
showing an affect on the size of BAT in a mouse-background
dependent manner. The mechanisms by which OGR1 regulates
this phenotype and the identification of the modifying gene
warrant further studies. The extent of brown fat abnormality
observed in OGR1 KO mice did not clearly affected the mouse

Figure 10. Melanoma growth was suppressed in OGR1 KO mice in both mixed and C57/BL6 backgrounds. (A, a) Tumorigenesis of
melanoma cells was reduced in OGR1 KO mice in the mixed background. B16-F10 cells (107 mouse melanoma cells) were injected s.c into FL and KO
mice in the mixed background. Mice were sacrificed at 9–14 days post-injection. (b) Representative pictures of the tumors developed in FL and KO
mice in the mixed background. (B). Summary of tumor volumes (a) and weights (b) in mice with the C57/BL6 background (n = 10 in WT and n = 12 in
KO). Tumorigenesis of melanoma cells was reduced in OGR1 KO mice.
doi:10.1371/journal.pone.0005705.g010

Disruption of Mouse OGR1 Gene

PLoS ONE | www.plosone.org 13 May 2009 | Volume 4 | Issue 5 | e5705



physiological function in these mice under normal living

conditions. It might be interesting to test whether under different

temperatures these mice behave differently from WT mice, since

brown fat is mainly involved in thermogenesis.

The role of OGR1 in macrophages may be related to its

function in tumorigenesis of melanoma cells, since reduced TAMs

were observed in tumors from KO mice, which also correlated

with reduced tumor sizes. However, similar to the BAT

phenotype, altered peritoneal macrophages were not consistently

observed in mice with a pure C57/BL6 background, suggesting

that a modifying gene(s) is likely to be involved.

OGR1 was likely to be involved in osteoclastogenesis and
tumorigenesis

The phenotypes of OGR1 KO mice related to osteoclast and

melanoma tumor formation were consistent in both mixed and

C57/BL6 backgrounds. Our results suggested that although

OGR1 may play a role in osteoclastogenesis, its effect on overall

bone physiology was rather minimal. It is possible that under

certain pathological conditions, the defect in osteoclast numbers

and/or their response to pH changes will affect some biological

functions. This is true when we test tumorigenesis when mice were

challenged with melanoma cells in either the mixed and or the

C57/BL6 background. The mechanisms by which host cells

OGR1 acts to regulate tumorigenesis remains to be further

investigated. Intriguingly, we have recently shown that OGR1

over-expression in tumor cells displays a tumor metastasis

suppressing role for prostate cancer [2]. It is highly interesting to

further study the apparent opposing roles of OGR1 in tumor vs.

host cells.

In summary, similar to other members of this family, OGR1

deficiency did not significantly affect overall mouse physiology.

While OGR1 deficiency did not result in a strong phenotype by

itself, it may generate interesting and strong phenotypes when

mice are challenged, as we report here for melanoma cells. In

addition, OGR1 and its subfamily GPCRs may have redundant

roles in vivo, which can be further revealed when more than one of

these genes is depleted. With this report, the initial phenotypic

analyses of the four members of OGR1-subfamily GPCRs has

now been completed and more interesting results are expected to

be generated from double to quadruple deficient mice.
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