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Figure 6. E84 activity involves the SOX trio. (A) ChIP-seq data, vertebrate conservation and schematics of the full-length E84 enhancer (FL) and segments
A to G. The top four graphs show ChIP-seq profiles obtained in RCS cells for SOX9 and SOX6 and for respective input material at the level of E84. Large
arrowheads, summits of SOX peaks identified using MACS software. Small arrows, SOX-binding regions (see panel D). The vertebrate conservation graph
was obtained by comparing 30 genomes, from lamprey to human, in the UCSC genome browser. Double arrows above the E segment schematic indicate the
positions of SOX-binding regions. (B) Activities of reporters harboring two copies of E84FL, A, B and C in RCS cells. (C) Activities of reporters harboring
four copies of E84C to E84G in RCS cells. (D) EMSA probe sequences. Only upper strands are shown. See Figure 5E for labeling explanations. Asterisks
mark nucleotides mutated in reporters tested in panels F and G. (E) EMSA with SOX protein-containing extracts from COS-7 cells and probes described
in panel D. Arrowhead, SOX protein/DNA complexes. (F) Reporter activities generated by four copies of wild-type and mutant E84E enhancers in RCS
cells. Mutations were as described in panel D. (G) Same experiment as in panel F, but in HEK-293 cells co-transfected with SOX expression plasmids.
Reporter activities were calculated and are presented as described in Figures 2B and 4B. See Supplementary Figure S4A and C for related data.
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Figure 7. Sox9 enhancer synergy and model for the activation of SOX9 in chondrocytes. (A) Activities of reporters carrying one copy of E70, E84 or E195,
or tandem combinations of one copy of these enhancers in RCS cells. Synergy between enhancers (1.1 to 3.4×) was calculated as the fold activation of
the Sox9 promoter obtained relative to the sum of the activities of individual enhancers. (B) Activities of the same reporters as in panel A in HEK-293
cells co-transfected with SOX expression plasmids. The best activation fold of the Sox9 promoter achieved by SOX proteins (SOX9 alone or together with
SOX6) is indicated for each reporter. (C) Model. See the first paragraph of Discussion for explanations.
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prehypertrophic stage, do not allow SOX9 to bind targets
specific of other chondrocyte differentiation stages (Liu, C.-
F., Lefebvre, V., submitted for publication). It thus remains
possible that E250 is dependent on SOX9 and on factors
that permit SOX9 binding to the enhancer in prechondro-
cytes. The Scherer group previously tested the human or-
tholog of E250, which they named E4, but they did not de-
tect enhancer activity in transgenic mouse embryos (27). A
possible explanation to account for the differences between
the two studies is that the Scherer group cloned only one
copy of E4 in their reporter, whereas we empowered our re-
porter by inserting four tandem copies of E250. In addition,
unlike the Bagheri-Fam reporter, the pWHERE reporter
that we used here included insulator sequences to protect
transgene activity from site-of-integration effects, and it
also featured a lacZ coding sequence optimized for expres-
sion and protein detection. We believe that these pWHERE
features are significant because we observed in preliminary
work that pWHERE was superior to our previously gen-
erated pLER reporter to generate strong and reproducible
transgene activities.

E195, E84 and E70 overlap in activity in differentiated
chondrocytes and all are dependent upon SOX9. There
are, however, notable differences between these enhancers.
E70 is active in most somatic tissues expressing Sox9, in-
cluding all Sox9-expressing chondrocytic stages, and it is
less active in cartilage than in other tissues. E195 is very
active in proliferating chondrocytes, and also shows ac-
tivity in a limited set of Sox9-expressing cells. E84 is the
most specific of the three enhancers for chondrocytes, and
it displays strong activity in all overtly developed carti-
lage types. E195 may upregulate Sox9 expression in growth
plates. E84 may ensure maintenance of Sox9 expression in
all chondrocytes. E70 may serve in chondrocytes as well as
in other cell types to boost the activity of cell type-specific
enhancers. Qualitative and quantitative differences in activ-
ities between the three enhancers were explained by show-
ing that SOX5/SOX6 boost activation of E195 and E84 by
SOX9, but have a repressor effect on E70. This result fits
with evidence that SOX5/SOX6 are necessary for chondro-
cyte overt differentiation through stimulating activation of
numerous cartilage-specific genes by SOX9, whereas they
repress gene activation by SOX9 in several other cell lin-
eages (30,38,45,46). This finding does not just identify ad-
ditional chondrocyte enhancers controlled by the SOX trio,
but it also uncovers that SOX5/SOX6 likely elevate Sox9
expression in differentiated chondrocytes. This role of the
proteins had not been revealed before. Cartilage primordia
were shown to form and express Sox9 at a seemingly nor-
mal level in Sox5/Sox6 double-null embryos, proving that
SOX5/SOX6 are not necessary for Sox9 expression in early
chondrocytes (36). However, the virtual inability of mutant
primordia to further develop did not allow testing the con-
tribution of SOX5/SOX6 to Sox9 expression in fully dif-
ferentiated chondrocytes. The almost exclusive confinement
of E84 activity to chondrocytes is likely related to the fact
that the SOX trio, although necessary for enhancer activ-
ity, is not sufficient. The additional proteins that permit
the trio to activate this enhancer only in chondrocytes re-
main to be identified. They may include inhibitory proteins

in nonchondrocytic cells expressing SOX9, and permissive
proteins in chondrocytes.

Besides E250, E195, E84 and E70, the –350-kb region
comprises several regions evolutionarily conserved and dis-
playing enhancer marks in developing limbs. In vitro and in
vivo reporter assays ascertained that at least four of these
regions are able to function as enhancers. One of them is
E239. Named E3, it was previously shown by the Scherer
group to be active in E8.5 to E10.5 embryos in the cra-
nial neural crest and inner ear, important sites of Sox9 ex-
pression (27). Its activity was shown to be enhanced when
fused with E250/E4 and a third element, called E5 and lo-
cated 30 kb further upstream. In line with the first findings,
we found strong activity of E239 in cranial neural crest-
derived cells, namely in the olfactory epithelium, develop-
ing tongue, teeth and palate. The ability of E4/E5 to en-
hance E3 activity is intriguing with respect to our finding
that E250/E4 is active primarily in prechondrocytic con-
densations. It is thus possible that E5, whose individual ac-
tivity has not been tested, was responsible for enhancing
the activity of E239/E3 rather than E250/E4. E20, E65 and
E161 were found to have enhancer activity in transgenic em-
bryos in sites where Sox9 expression is undetectable. Several
of these sites, such as mesenchyme located between carti-
lage primordia, derived from Sox9-expressing cells. In the
testis, E239 and E65 were inactive in Sertoli cells, which ro-
bustly express endogenous Sox9, and in mesenchyme, which
derives from Sox9-expressing cells. In contrast, they were
active in cells that likely correspond to germ cells. These
cells do not express endogenous Sox9 and do not derive
from Sox9-expressing cells (47). These enhancers are thus
unlikely to contribute to the testis differentiating activity of
Sox9. It is possible that the cloning of multimers just up-
stream of the Sox9 promoter allowed these enhancers to
exhibit prolonged activity or an activity level that in the en-
dogenous Sox9 locus escapes detection.

This study focused on the –350-kb region upstream of
SOX9 based on evidence that most chromosomal translo-
cations causing campomelic dysplasia occur within this re-
gion and based on evidence that a YAC transgene encom-
passing this region was sufficient to drive expression of a re-
porter gene in most of the Sox9 expression domain. The en-
hancers that we have identified in this region between –70kb
and –250-kb do not explain, however, why a campomelic
dysplasia patient who had a chromosomal breakpoint at
288–319 kb upstream of SOX9 presented with the full spec-
trum of skeletal features characteristic of the disease (48)
and why another patient with a chromosomal breakpoint
at –375kb was a classical case of mild campomelic dyspla-
sia (23). Based on these two cases and our lack of identifica-
tion of chondrocyte enhancers between 250 and 350 kb up-
stream of SOX9, we anticipate that one or several additional
enhancers with important roles in the chondrocyte lineage
may be located more than 375 kb upstream of SOX9. These
enhancers may overlap in activity and even synergize with
the enhancers identified in the present study or they may be
active in chondrogenic mesenchymal cells before precarti-
laginous condensation.

The presence of many enhancers around SOX9 is not a
surprise as more and more genes, especially those involved
in pivotal regulatory functions, are associated with multi-
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ple enhancers, collectively called super-enhancers. This has
been shown, for instance, in embryonic stem cells (39,40).
This enhancer multiplicity may serve several purposes, be-
sides synergistic activation of gene expression. In the case of
enhancers controlling SOX9 expression in the chondrocyte
lineage, it may significantly contribute to the great diver-
sity in skeleton patterning existing among and within ver-
tebrate species. For instance, polymorphism in E195 could
generate variable levels of SOX9 expression in the growth
plate and thereby differential growth rates. Polymorphism
in E250, which is active in condensing prechondrocytes,
could result in variations in the number, size and shape of
cartilage structures. Polymorphism in E84, which is active
in all types of differentiated chondrocytes, could account
for variation in both size and strength of temporary and
adult cartilage tissues. While polymorphisms in enhancer
sequences may underlie variations within what is consid-
ered a normal range, mutations drastically affecting the ac-
tivity of enhancers may underlie many types of yet unex-
plained genetically inherited diseases. Severe diseases could
include campomelic dysplasia and acampomelic dysplasia.
Milder diseases could comprise minor skeletal dysplasias
leading to early-onset osteoarthritis. As most SOX9 en-
hancers are active in several cell types, polymorphisms and
disease-causing mutations are likely, as in campomelic dys-
plasia, to affect both skeletal and nonskeletal processes.

In conclusion, this study greatly illuminates current un-
derstanding of the molecular control of SOX9 expression
in chondrocytes and other cells. It has shed new light on
possible disease mechanisms, including but not limited to
campomelic dysplasia. Furthermore, it has provided new
tools to further dissect mechanisms underlying normal and
pathological processes and to design novel strategies to pre-
vent and treat skeletal and other types of diseases.
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