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Abstract

In 1993, several groups, working independently, reported the successful generation of transgenic mice with yeast
artificial chromosomes (YACs) using standard techniques. The transfer of these large fragments of cloned genomic
DNA correlated with optimal expression levels of the transgenes, irrespective of their location in the host gen-
ome. Thereafter, other groups confirmed the advantages of YAC transgenesis and position-independent and copy
number-dependent transgene expression were demonstrated in most cases. The transfer of YACs to the germ line
of mice has become popular in many transgenic facilities to guarantee faithful expression of transgenes. This tech-
nique was rapidly exported to livestock and soon transgenic rabbits, pigs and other mammals were produced with
YACs. Transgenic animals were also produced with bacterial or P1-derived artificial chromosomes (BACs/PACs)
with similar success. The use of YACs, BACs and PACs in transgenesis has allowed the discovery of new genes
by complementation of mutations, the identification of key regulatory sequences within genomic loci that are
crucial for the proper expression of genes and the design of improved animal models of human genetic diseases.
Transgenesis with artificial chromosomes has proven useful in a variety of biological, medical and biotechnological
applications and is considered a major breakthrough in the generation of transgenic animals. In this report, we will
review the recent history of YAC/BAC/PAC-transgenic animals indicating their benefits and the potential problems
associated with them. In this new era of genomics, the generation and analysis of transgenic animals carrying
artificial chromosome-type transgenes will be fundamental to functionally identify and understand the role of new
genes, included within large pieces of genomes, by direct complementation of mutations or by observation of their
phenotypic consequences.

Overcoming position effects in transgenic animals

The generation of transgenic animals is a routine
method in many laboratories worldwide. Transgenesis
is commonly applied to study gene function in de-
velopment and disease, to devise new animal models
of human genetic diseases or to produce recombinant
proteins in fluids, mostly milk, of transgenic anim-
als. However, there is still a major limitation in the
method, namely, the uncertainty about the expres-
sion of each transgene. This is mainly caused by the
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stochastic event of transgene integration within the
host genome and the nature of the transgenic con-
structs. It is accepted that host sequences surrounding
the place of transgene integration can modify the ex-
pected expression pattern, potentially causing it to
be ectopic, weak or even undetectable. This is cur-
rently interpreted as the result of chromosomal posi-
tion effects (Wilson et al., 1990; Sippel et al., 1997)
In addition, the limited knowledge of regulatory se-
quences for most genes favour the use of partial, often
uncharacterised, genomic fragments that frequently
function poorly in gene transfer experiments (Palmiter
& Brinster, 1986).
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A number of strategies have been proposed to over-
come these position effects and thus increase the prob-
ability of optimal expression for transgenes integrated
at random locations. The incorporation of homolog-
ous intronic sequences in transgenic constructs were
among the first suggestions recognised to improve ex-
pression of transgenes (Brinster et al., 1988; Whitelaw
et al., 1991). Heterologous introns have also been
routinely used in transgenic experiments and shown
to improve expression in some cases (Choi et al.,
1991; Palmiter et al., 1991). The inclusion of specific
sequences such as scaffold/matrix-attachment regions
(S/MARs) (McKnight et al., 1992; but see Gutierrez-
Adan & Pintado, 2000), locus control regions (Gros-
veld et al., 1987; Ganss et al. 1994; Montoliu et al.
1996; most recently reviewed in Li et al., 1999) and
insulators (Chung et al., 1993; Taboit- Dameron et al.,
1999) have been reported to ameliorate transgenic ex-
pression. The adjacent co-integration of an abundantly
expressed transgene has also been shown to rescue
cDNA-type constructs present as a second neighbour
transgene (Clark, 1997).

At best, targeting the site of integration by ho-
mologous recombination in ES cells (i.e., knock-in)
would virtually solve any chromosomal position ef-
fects since the transgenic construct would then be
controlled by all regulatory sequences present in the
chosen endogenous locus. Alternatively, particular
locations in the host genome can be selected accord-
ing to their capacity to allow adequate expression
patterns of experimental transgenes (Wallace et al.,
2000). This strategy has been recently applied in
transgenic sheep obtained by nuclear transfer from
cultured somatic cells and served to identify the ovine
α1(I) procollagen (COL1A1) locus as a permissive
candidate for the insertion of therapeutically useful
transgenes to be expressed in the milk at optimal
levels (McCreath et al., 2000). Figure 1 summarises
the above-mentioned strategies devised to overcome
position effects in transgenic animals.

Position effects support the notion that genes are
organised on chromosomes as contiguous but inde-
pendent units referred to as expression domains (El-
gin, 1990; Laemmli et al., 1992; Dillon & Gros-
veld, 1994). These expression domains are believed
to remain insulated from neighbouring sequences and
thought to include all regulatory elements that are ne-
cessary for correct gene expression. Thus, it is not
surprising that standard transgenic constructs lacking
most or some of these crucial regulatory sequences
might display position effects when integrated ran-

Figure 1. Diverse strategies devised to overcome position effects
in transgenic animals (A) basic cDNA-type transgenic construct;
(B) addition of intronic (homologous and heterologous) sequences;
(C) addition of S/MAR sequences; (D) addition of a locus control
region; (E) addition of insulating sequences; (F) transgene rescue
by co-integration of an abundantly expressed transgene (stippled
boxes); (G) use of genomic sequences contained within an artificial
chromosome-type of transgenic constructs; and (H) gene targeting,
knock-in. Symbols used: white rectangles (coding region of a gene),
grey rectangle (S/MARs), grey oval (Locus Control Region), grey
triangle (insulator), stippled box (coding region/exons of another
gene, used to drive the expression of the transgene), white oval with
pA (polyadenylation signal).

domly within the host genome. Most of the strategies
devised to overcome such position effects have repor-
ted the progressive addition of regulatory elements, as
a successful approach to improve the expression of
transgenic constructs in a significant manner. Figure 2
shows a graphic representation of an expression do-
main along with the expected performance of different
versions of a corresponding transgenic construct, pro-
gressively including more regulatory elements. Theor-
etically, the inclusion of all regulatory elements that
are associated with a given expression domain in a
transgenic construct would guarantee optimal expres-
sion levels in transgenic animals regardless of position
of integration. Such conditions are present in artificial-
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Figure 2. The expression performance of transgenic constructs nor-
mally depends on the presence of sufficient regulatory elements that
identify an expression domain. The progressive addition of these
elements usually correlates with an improved expression of trans-
genes. Symbols used are as in Figure 1 with the addition of: grey
circles (enhancers), grey hexagon (repressor).

chromosome type vectors (YACs, BACs and PACs),
due to their large cloning capacity. In this review
we will discuss the use of these vectors in animal
transgenesis.

The benefits and applications of using yeast ar-
tificial chromosomes (YACs) for animal transgenesis
have been previously reviewed (Montoliu et al., 1993,
1994; Forget, 1993; Jakobovits, 1994; Lamb & Gear-
hart, 1995; Peterson, 1997a; Peterson et al., 1997b;
Umland et al., 1997; Huxley 1998; Camper & Saun-
ders 2000). The use of YACs in transgenesis is likely
to ensure position-independent, copy-number depend-
ent and optimal levels of expression of the trans-
genes, provided all regulatory sequences needed for
the establishment and maintenance of the expression
domain are located within the YAC. Thus, YAC trans-
genes can circumvent most position effects observed
with standard constructs, being the recommended
choice when regulatory sequences of a gene are not
known (Lamb et al., 1993; Schedl et al., 1993b;
Strauss et al., 1993; Hodgson et al., 1996; Ainscough
et al., 1997; Fujiwara et al., 1997; Hiemisch et al.,
1997; Porcu et al., 1997; Zweigerdt et al., 1997;
Peterson et al., 1998; Li et al., 2000).

Transgenic animals generated with YACs

YACs are eukaryotic cloning vectors capable of the
stable maintainance of genomic fragments of DNA

Figure 3. YACs versus standard constructs in transgenic mice, an
example: rescue of the albino phenotype by introduction of func-
tional tyrosinase constructs into mice. Standard minigene-type of
constructs (ptrTyr4, 5.5 kb and ptrTyr5, 280 bp of tyrosinase pro-
moter and upstream regulatory sequences, as reported in Beermann
et al. (1990) and Klüppel et al. (1991), respectively) result in
mice with variable expression of transgenes, showing pigmenta-
tion phenotypes weaker than that of wild-type animals. In contrast,
YAC-type of constructs (i.e. YRT2, 250 kb encompassing the whole
mouse tyrosinase locus, as reported in Schedl et al. (1993b))
produce transgenic mice indistinguishable of wild-type animals,
without pigmentation variability and showing position-independent
and copy number-dependent transgene expression.

larger than 1 Mb (Burke et al., 1987). YACs are lin-
ear DNA molecules and are generated from vectors
(such us pYAC4, Kuhn & Ludwig, 1994) that provide
all functional elements for their maintenance in yeast
cells as artificial chromosomes (Figure 4, Green et al.,
1999). Their vast cloning capacity, compared to stand-
ard cloning vectors (plasmids, phages and cosmids),
made them very attractive for gene transfer experi-
ments. Several groups tested this hypothesis and eval-
uated their suitability for transgenesis in mice. Thus,
in 1993, a number of independent teams succeeded
in generating the first transgenic mice with YACs.
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Figure 4. Schematic representation of a YAC, a P1-clone, a
PAC and a BAC. Functional elements in each vector are shown
in black. Selectable marker genes are shown in grey. Hetero-
logous insert DNA is shown as a stippled discontinuous box.
YAC, P1-clone, PAC and BAC modules shown here are de-
rived from vector pYAC4 (Kuhn & Ludwig, 1994; Genbank
U01086), pAd10SacBII (Pierce et al., 1992; Genbank U09128),
pCYPAC2 (Ioannou et al., 1994, sequence derived from Genbank
U09128, map available in http://www.chori.org/bacpac/) and pBe-
loBAC11 (Research Genetics, Genbank U51113, map available
in http://www.tree.caltech.edu), respectively. P1-clones and PACs
share vector sequences and only differ by their respective upper size
limit on insert length, as indicated. Abbreviations:TEL, Tetrahy-
menatelomere-derived sequence; CEN4, yeastCEN4centromere;
ARS1, yeast autonomous replicating sequence 1;TRP1, yeastTRP1
gene;URA3, yeastURA3gene; loxP, loxP site recognised by the
Cre-recombinase protein;kanr , kanamycine-resistance gene;sacB,
bacterial gene used in positive selection for cloned inserts;cosN,
cosNsite from bacteriophageλ which may be cleaved by bacterio-
phageλ terminase;oriS, repE, parA, parB andparC, genes derived
from the F factor ofEscherichia colineeded for the autonomous
replication, copy-number control and partitioning of the BAC;Cmr ,
chloramphenicol-resistance gene . Not drawn to scale.

Three groups reported their pioneer work in two journ-
als within a week of one another (Jakobovits et al.,
1993; Schedl et al., 1993b; Strauss et al., 1993). Re-
markably, three different techniques were described to
deliver YAC DNA to the germline of mice: pronuc-
lear microinjection of gel-purified YAC DNA (Schedl
et al., 1993b), lipofection of YAC DNA into ES
cells (Strauss et al., 1993) and yeast spheroblast fu-
sion with ES cells (Jakobovits et al., 1993). Two of
these YAC transgenes, the mouse tyrosinase and the
collagen (COL1A1) genes, demonstrated transgenic

expression at levels comparable to the corresponding
endogenous genes (Schedl et al., 1993b; Strauss et al.,
1993). Furthermore, analysis of several independent
transgenic mouse lines carrying multiple copies of the
YAC tyrosinase transgene permitted to prove position-
independent and copy-number dependent expression
(Schedl et al., 1993b). This study showed the faithful
rescue of the albino phenotype of recipient animals
by a 250 kb YAC tyrosinase transgene, as compared
to the variability in pigmentation levels obtained with
previous standard (and much smaller) tyrosinase con-
structs (Beermann et al., 1990; Tanaka et al., 1990;
Kluppel et al., 1991). The comparison between stand-
ard (plasmid) and YAC tyrosinase transgenic mice
is presented in Figure 3 and illustrates the generally
good performance of YAC transgenes in gene trans-
fer experiments observed in this particular and most
other examples. Faithful expression was demonstrated
with a 680 kb Myf-5 YAC transgene (Zweigerdt et al.,
1997), whereas previous attempts made with stand-
ard Myf-5 transgenes driven by 5.5-kb 5′-upstream
sequences failed to recapitulate the precise develop-
mental expression pattern (Patapoutian et al., 1993).
Similarly, a 130 kb YAC transgene containing both
the Igf2 and H19 genes, was shown to display gen-
omic imprinting effects according to their endogenous
counterparts (Ainscough et al., 1997), in contrast
with the previously described imprinting of mini-H19
transgenes, which only occured at multi-copy loci, in-
consistently and prone to genetic background effects
(Bartolomei et al., 1993; Pfeifer et al., 1996; Elson &
Bartolomei, 1997). A number of independent experi-
ments further confirmed the high perfomance of YAC
constructs and their potential to overcome position
effects in transgenic mice, according to the predic-
tion of the model (Lamb et al., 1993; Strauss et al.,
1993; Hodgson et al., 1996; Montoliu et al., 1996;
Fujiwara et al., 1997; Hiemisch et al., 1997; Porcu
et al., 1997; Peterson et al., 1998; Li et al., 2000).
In most of these cases YAC transgene expression
was found comparable to that of endogenous levels
and largely determined by transgene copy-number. In
addition, position-independent expression has been re-
ported also in YAC constructs stably transfected in
cells (i.e., Asselbergs et al., 1998; Vassilopoulos et al.,
1999).

Some β-globin YAC transgenes, containing the
β-globin LCR, have been reported to display uni-
form expression but position effect variegation in mice
(Alami et al., 2000). However, these data are in
good agreement with previous experiments carried out
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in the endogenous mouseβ-globin locus, suggesting
the existence of unknown regulatory sequences that
may compensate for LCR function when this spe-
cific sequence is removed from its endogenous normal
context (Epner et al., 1998; Bender et al., 2000).
Thus, the suboptimal performance occasionally ob-
served with some YAC transgenes, such as the partial
rescue ofGATA-3 mutant mice by YAC transgenes
(Lakshmanan et al., 1998), is normally explained by
the absence of additional regulatory elements that are
required for correct expression pattern of the gene
(Lakshmanan et al., 1999).

The use of YACs has been fundamental in mo-
lecular complementation of mutations, allowing the
identification of new genes by transgene rescue of
mutant phenotypes (i.e. Morgan et al., 1998; Majum-
der et al., 1998; Slee et al., 1999). Other applications
have been explored with this new technique. The trans-
fer of large genomic units enabled the production
of human immunoglobulin light and heavy chains in
transgenic mice (Davies et al., 1993; Choi et al., 1993;
Zou et al., 1996) and, eventually, the generation of
transgenic mice producing an almost complete reper-
toire of human antibodies in their sera from genomic
unrearranged immunoglobulin loci cloned into YACs
(Green et al., 1994; Fishwild et al., 1996; Mendez
et al., 1997).

The overexpression of genes associated with hu-
man disease in mice via YAC transgenesis has also
been investigated. For example, YACs containing the
APPgene (>400 kb), encoding the amyloid precursor
protein that accumulates abnormally in Alzheimer
and other neurodegenerative diseases have been trans-
ferred to the germ line of mice aiming to produce
animal models that were useful to study these human
pathological conditions (Lamb et al., 1993; Pearson
& Choi, 1993). However, the limited overexpression
level achieved (two-fold) did not reproduce all the
features of Alzheimer’s disease (Murai et al., 1998)
and triggered the generation of new YAC transgenic
mice carrying mutant versions of theAPPgene, and/or
new candidate genes also associated with Alzheimer’s
disease (i.e.apolipoprotein E4, presenilin-1in Loring
et al., 1996; Lamb et al., 1997, 1999).

YAC transgenic mice have also proven essential in
the discovery of candidate genes responsible for the
complex abnormal phenotype found in Down’s syn-
drome patients. A panel of YAC transgenic mice was
generated covering the human chromosome 21q22.2, a
contiguous 2 Mb area known as the Down’s syndrome
region (Smith et al., 1995). A functional screening of

these transgenic mice led to the discovery of a gene
(minibrain) implicated in learning defects associated
with Down’s syndrome (Smith et al., 1997a).

A number of informative and advantageous trans-
genic mice have been generated with YAC-basedβ-
globin locus (i.e. Peterson et al., 1993; Gaensler et al.,
1993; Peterson et al., 1996; Liu et al., 1997; Calzolari
et al., 1999). Proper developmental expression pat-
terns were demonstrated for the humanβ-globin trans-
genes, compared to the endogenous murine copies. In
Table 1 these and other YAC transgenic animals are
summarised in a comprehensive manner, emphasising
the most relevant features of each set of experiments.

The generation of transgenic animals with YACs
has been extended to other mammals with comparable
success. To date, transgenic pigs (Yannoutsos et al.,
1995), rabbits (Brem et al., 1996; Rouy et al., 1998),
and rats (Fujiwara et al., 1997, 1999b) have been gen-
erated with YAC transgenes. In livestock, the benefits
of YAC transgenesis are fundamentally focused in two
fields: xenotransplantation and the efficient produc-
tion of recombinant proteins of interest in the milk of
transgenic animals.

Technical considerations for the generation of
YAC transgenic animals

A number of different methods have been devised to
produce transgenic animals with YACs both using pro-
nuclear microinjection and transfection into ES cells
(Schedl et al., 1993a; Jakobovits et al., 1993, 1999;
Strauss et al., 1993; Choi et al., 1993; Gaensler et al.,
1993; Huxley 1998; Peterson, 1999). A protocol suit-
able for the preparation of YAC DNA for pronuclear
microinjection can be found at the following WEB
page: http://www.cnb.uam.es/∼montoliu/prot.html.

Most of the present experiments make use of stand-
ard pronuclear injection with the appropriate technical
considerations for DNA molecules of this large size.
Early reported methods were based on the modific-
ation of YAC vector arms to allow amplification of
YACs inside the yeast cells in order to increase the re-
covery of YAC DNA molecules (Schedl et al., 1993a,
1996a). Soon it was obvious that the amplification
step was not essential for adequate purification of YAC
DNA and in subsequent updated methods this step was
omitted (Peterson, 1997a; Hiemisch et al., 1998). Fur-
thermore, the amplification step in yeast cells required
the presence ofHSV thymidine kinasegene in one of
YAC-vector arms which has been reported to impair
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germ-line transmission of YAC transgenes in males
(Fujiwara et al., 1997).

Regarding the handling and microinjection of YAC
DNA, the presence of ionic strength (100 mM so-
dium chloride) has been reported to be required
to stabilise YAC DNA molecules in solution. Fur-
ther, the addition of polyamines is recommended.
These compacting agents promote the formation of
YAC DNA-polyamine complexes and prevent shear-
ing upon handling and microinjection of YACs (Mon-
toliu et al., 1995; but see Bauchwitz & Constantini,
1998). Different strategies have been suggested to
concentrate YAC DNA for microinjection including a
second standard gel electrophoresis after preliminary
isolation on PFGE (Schedl et al., 1993a); dialysis in
sucrose (Gaensler et al., 1993) and the use of spe-
cific spin filtration units (Peterson et al., 1993). The
use of two gels followed by an agarase treatment is
preferred in some laboratories over the filtration al-
ternative. The later, although easier and faster, requires
special care to avoid potential breakage of YAC DNA
molecules during the more extensive pipetting steps.
Apart from the above mentioned protocols, suitable
for the pronuclear microinjection of YACs, adapted
versions have been developed for the efficient trans-
fection of YACs into somatic (Compton et al., 1999)
and mouse ES cells (Lee & Jaenisch, 1996; Bauchwitz
& Constantini, 1998).

YACs are normally isolated from the rest of en-
dogenous yeast chromosomes by preparative PFGE
techniques (i.e. Schedl et al., 1993a). However, YACs
are generally of the same size range as the endogen-
ous yeast chromosomes. Thus, the isolation of YAC
DNA by electrophoretic techniques can be impaired
by the presence of comigrating or closely migrating
endogenous yeast chromosomes. Some studies have
shown that the cointegration of contaminant yeast en-
dogenous chromosomes does not seem to have an
overt effect in the expression of YAC transgenes
(Jakobovits et al., 1993; Green et al., 1994; Mendez
et al., 1997). However, it is always preferable to mi-
croinject YAC DNA samples free of contaminating
yeast endogenous chromosomes. This can be easily
achieved by mobilising the YAC to alternate yeast
hosts with defined karyotypic alterations (Hamer et al.,
1995). This new set of hosts, called yeast window
strains, have been engineered using recombination-
mediated chromosome fragmentation. Each strain has
defined alterations in its karyotype, which provide an
electrophoretic interval devoid of yeast endogenous
chromosomes, thus allowing the isolation of relati-

vely pure YAC DNA regardless of YAC size (Hamer
et al. 1995). All of the yeast window strains carry
the kar1-115 mutation, thereby allowing the effi-
cient transfer of a YAC from its original host into
an appropriately selected yeast window strain using
the kar1-transfer standard procedure (Spencer et al.,
1994).

The overall efficiency of transgenesis with YACs
(measured as the number of transgenic positive indi-
viduals found among newborns obtained) is compar-
able to that of standard DNA constructs although in
some cases low efficiencies (<5%) are observed, most
likely due to co-purified contaminants present in crude
YAC DNA preparations. Although the usual number
of YAC DNA molecules microinjected is much smal-
ler than with standard plasmids (Brinster et al., 1985;
Palmiter & Brinster, 1986), due to the bigger size
of YAC transgenes, this does not seem to have an
effect in transgenic efficiencies (Schedl et al., 1992,
1993b; Brem et al., 1996; Peterson, 1997a). The pres-
ence of vector sequences (10–15kb long) found at
either end of YACs does not appear to alter or prevent
expression patterns of the borne transgenes (Schedl
et al., 1992, 1993; Montoliu et al., 1996). Usually,
5–20% of newborn animals are found to be DNA-
positive for the injected YAC transgene but only a
variable proportion of them (20–70%) retains the en-
tire YAC integrated in the host genome. Therefore,
it is crucial to evaluate (i.e., by PCR) the integrity
of YAC transgenes by analysing the presence of left
and right YAC-vector arms, along with exhaustive
Southern analysis with a set of internal probes, be-
fore subsequent experiments are actually carried out
with selected founder animals (i.e. Smith et al., 1995;
Montoliu et al., 1996; Brem et al., 1996; Peterson,
1997; Fujiwara et al., 1997). Additional methods that
can be applied to assess YAC DNA integrity within
the host genome includerecA-assisted restriction en-
donuclease (RARE) analysis (Gnirke et al., 1993),
restriction enzyme analysis with rare cutters (i.e.SfiI,
PpoI; Peterson et al., 1998) and fiber fluorescence
in situ hybridisation (FISH) (Rosenberg et al., 1995),
a sophisticated method that uses stretched chromatin
preparations to evaluate the integrity, organisation and
copy number of integrated YAC transgenic sequences
by FISH (Rosenberg et al., 1996).

Most transgenic animals generated with YACs
carry single or few (<5) copies of transgenes in-
tegrated, in agreement with the limited number of
DNA molecules that are microinjected. The presence
of multiple copies (>5) is uncommon, but has been
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reported (i.e. Schedl et al., 1993b, 1996b; Smith et al.,
1995; Ainscough et al., 1997; Moore et al., 1998).

Alternatively, the introduction of YACs into the
germ-line of mice can be achieved via ES cells with
the subsequent generation of chimaeric mice (Strauss
et al., 1993; Choi et al., 1993; Jakobovits et al., 1993;
Green et al., 1994; Mendez et al, 1997). This ap-
proach, although more difficult and time consuming
allows the functional and structural characterisation
of YAC-transgenes prior to the generation of trans-
genic mice (Green et al., 1994; Mendez et al., 1997).
ES cell clones can be screened for the presence of
both YAC-vector arms and different copy-number in-
tegration events, single and multicopy arrays, can be
selected for further analysis in transgenic mice (i.e.
Heard et al., 1999a,b).

Besides these advantages, some inherent prob-
lems should be taken into account before using ES-
cell based approaches for the transfer of YACs into
the germ-line of mice. First, YAC-positively trans-
fected ES cell clones are selected for G418 res-
istance (Strauss et al., 1993; Choi et al., 1993)
or for complementation of hypoxanthine phosphori-
bosyltransferase (HPRT)-deficient ES cell lines in
hypoxanthine–aminopterin–thymidine(HAT) medium
(Jakobovits et al. 1993; Green et al., 1994; Mendez
et al., 1997). These selection procedures require the
use of drug-selectable marker genes that are either
targeted into a YAC vector arm (neomycin resistance
gene in Strauss et al., 1993; HPRT gene in Green
et al., 1994; Mendez et al., 1997) or co-transfected
in a separate plasmid (neomycin resistancegene in
Choi et al., 1993). The selection procedure biases
YAC integration into ‘open’ or ‘active’ chromatin, per-
missive for marker gene expression. Thus, in these
cases, position effects on YAC transgene expression
would not be observed, or be effectively masked,
by pre-selection for integration into euchromatic re-
gions. Further, the co-integration of YAC transgenes
along with drug-selectable marker genes might inter-
fere with the normal expression pattern of the YAC-
borne gene, as it has been reported in standard gene
targeting approaches (Fiering et al., 1995).

Second, the fusion of yeast spheroblasts carry-
ing YACs with HPRT-deficient ES cell lines results
in the effective transfer and co-integration of vari-
able and uncontrolled amounts of the remaining yeast
genome into the ES cell genome (Jakobovits et al.,
1993; Green et al., 1994, Mendez et al., 1997). In
some ES cell clones, even the entire 12 Mb yeast gen-
ome was deduced to be present by fingerprint analysis

(Jakobovits et al, 1993). Surprisingly, adverse effects
were not observed in transgenic mice derived from
ES cell clones fused with yeast spheroblasts. How-
ever, it seems very unlikely to anticipate that none
of the 6,000 genes known to be present in the yeast
genome will not interfere, in some manner, with the
complex gene expression programme of a mammalian
cell. Therefore, the isolation of YAC DNA from yeast
endogenous chromosomes prior to any gene transfer
strategy should be, in our opinion, the recommended
choice.

Transgenic animals generated with BACs/PACs

YACs are unique as vectors due to their huge clon-
ing capacity and their unlimited potential for tar-
geted modifications of incorporated genomic inserts
(Schlessinger, 1990; Green et al., 1999). But, the
routine work and handling of YACs requires spe-
cific skills and new expertise, which may not be
present in all molecular biology laboratories. More
importantly, several disadvantages are associated with
YACs, including insert chimaerism (can be>50% of
clones in a YAC library), insert instability, rearrange-
ments and potential contamination with endogenous
yeast chromosomes that can make difficult their ef-
ficient purification for microinjection or transfection
into ES cells (Monaco & Larin, 1994; Green et al.,
1999). To overcome these problems several other arti-
ficial chromosome-type vectors have been developed
and have become popular. These include bacterio-
phage P1 clones (Sternberg et al., 1990, 1999; Pierce
et al., 1992), bacterial artificial chromosomes (BACs)
(Shizuya et al., 1992) and P1 bacteriophage-derived
artificial chromosomes (PACs) (Ioannou et al., 1994).
Figure 4 shows the basic modules from all artificial
chromosomes-type vectors discussed in this review.

The bacteriophage P1 cloning system can effi-
ciently accommodate 70–100kb heterologous DNA
inserts inE. coli (Sternberg 1999). P1 clones are usu-
ally derived from pAd10sacBII-type of vectors (Pierce
et al., 1992). P1 clones are normally obtained by ligat-
ing genomic pieces of DNA with vector arms thereby
generating a linear DNA molecule that is further pro-
cessed and packaged in viral particles. Bacteriophage
P1 particles are subsequently used to infect appro-
priate hosts where P1 clones are circularized by its
loxP/Cre-recombinase system. Thereafter, P1 clones
are subsequently maintained as single-copy circular
plasmids. Copy-numbers, and hence DNA yield, can



92

be increased 10–30-fold before the DNA is isolated
by regulating the activity of the bacteriophage P1 lytic
replicon with IPTG. However, amplification of cloned
DNA that contains repetitive sequences can lead to re-
arrangements (Birren et al., 1999). Upper limit size
for inserts in P1 clones is fixed by the packaging
capacity of bacteriophage particles (around 110 kb, in-
cluding vector arms) (Sternberg 1999). PACs are very
similar in structure to P1 clones (Figure 4, Ioannou
et al., 1994; Birren et al, 1999). The main differ-
ence between PACs and P1 clones is that PACs lack
the fixed upper size limit on insert length because
PAC ligation mixes are transformed into their bacterial
hosts by electroporation, whereas the generation of P1
clones involves thein vitro packaging step in bacterio-
phage particles (Sternberg, 1999; Birren et al., 1999).
Thus, recombinant PACs achieve the same size range
of inserts (100–300kb) as do BACs (Ioannou et al.,
1994; Monaco & Larin, 1994; Birren et al., 1999).

BACs, similar to PACs, are also circular plasmid
DNA molecules that are hosted inE. coli. BACs can
accommodate genomic inserts up to 300 kb and are
derived from the F factor ofE. coli (Shizuya et al.,
1992). BAC vectors, such as pBeloBAC11, carry all
sequences needed for autonomous replication, copy-
number control and partitioning of the plasmid (Fig-
ure 4, Birren et al., 1999). In contrast to P1 clones
and PACs, BACs are maintained as low-copy replicons
and, correspondingly, yield lower quantities of DNA.
For most applications, BACs and PACs are largely in-
terchangeable and able to propagate large DNA inserts
stably. Most protocols can be successfully applied to
both types of clones, with the exception of antibiotic
selection (kanamycin for PACs, chloramphenicol for
BACs). Opposite to YACs, inserts cloned and main-
tained in BACs and PACs show low frequency (<5%)
of chimaerism and much higher stability (Monaco &
Larin, 1994; Birren et al., 1999). These new vec-
tors have been used to generate genomic libraries that
have been instrumental for most genome sequencing
projects.

P1 bacteriophage clones were initially used
to generate transgenic mice covering the human
apolipoprotein-Bgene (Linton et al., 1993), and the
human chromosome 21q22.2, in combination with
YACs, to isolate candidate genes associated with
Down’s syndrome (Smith et al., 1995). Furthermore,
P1 clones and PACs have been successfully used to
generate transgenic mice (McCormick et al., 1997b;
Goodart et al., 1999; Chiu et al., 2000; Duff et al.,
2000) and zebrafish (Jessen et al., 1999) in order to

study long-range genomic interactions with the help
of reporter genes.

The use of BACs in transgenic experiments was
first reported in 1997 (Yang et al., 1997). The au-
thors describe a simple method to modify a BAC that
was then transferred to the germ-line of mice. Since
then, a number of reports using BACs for transgenesis
have been published along with pioneer revisions in
this subject (Dewar et al. 1997; Nielsen et al., 1999;
Heintz, 2000; Camper & Saunders, 2000). Table 2
summarises the reported BAC and PAC transgenes to
date.

Similar to the work previously undertaken with
YACs, BACs have been applied in a wide variety
of studies including: molecular complementation of
mutations (Antoch et al., 1997; Probst et al., 1998),
in vivo studies of gene function (Yu et al., 1999; Zuo
et al., 1999), analysis of gene dosage (Antoch et al.,
1997; Yang et al., 1999), and the identification and
analysis of regulatory sequences found at long dis-
tances (Nielsen et al., 1997, 1998; Kaufman et al.,
1999). Further, BACs have been evaluated for their
potential to improve mammary gland transgenesis and
for the production of recombinant proteins in the milk
of transgenic animals (Stinnakre et al., 1999; Zuelke,
1998).

Technical considerations for the generation of
BAC transgenic animals

Several methods have been devised to purify BAC
DNA for mammalian transgenesis (Yang et al., 1997;
Chrast et al., 1999). A protocol suitable for the pre-
paration of BAC DNA for pronuclear microinjection
can be found at the following WEB page: http://
www.med.umich.edu/tamc/BACDNA.html. BACs
have been microinjected in three different forms: cir-
cular supercoiled plasmid, linearised DNA and puri-
fied insert. It is possible to obtain transgenic animals
with undigested BACs that carry essentially intact in-
sert DNA (Antoch et al., 1997; Duff et al., 2000), but
there is always a risk of obtaining undesirable DNA
molecules generated by random linearisation within
constructs prior to the integration. Therefore, the pre-
ferred methods have been to microinject linearised
BAC clones (Antoch et al., 1997; Probst et al., 1998;
Jessen et al., 1998) or, better, the isolation of genomic
inserts by PFGE after suitable enzymatic release (nor-
mally NotI) from vector sequences (Yang et al., 1997;
Kaufman et al., 1999; Stinnakre et al., 1999). In some
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Table 3. YAC versus BAC/PAC transgenesis

YACs BACs/PACs

Host cell Saccharomyces cerevisiae Escherichia coli

Type of DNA molecule Linear chromosome Circular plasmid

Insert size Up to 1–2 Mb Up to 300 kb

Protocols for handling Difficult Easy

and isolation of DNA

DNA yield Low Medium (BACs)

High (PACs)

Resistance to shearing Low (fragile) High (in supercoiled form)

Direct sequencing possible No Yes

Selection markers in host cell Complementation of Resistance to antibiotics

auxotrophic mutants kanr (PACs)

resistance to drugs Cmr (BACs)

Insert chimaerism High Very low

(>50% clones) (<5%)

Insert rearrangements Yes Very rare

Modification capabilities Plenty Few (increasing)

Reproducible protocols Protocols in evolution

Protocols for Mutagenesis Easy Difficult

cases, such as generating transgenic mice with BACs
carrying mouse DNA inserts, it is helpful to microin-
ject linearised BAC molecules with vector sequences
attached that can serve later as tags (polymorphisms)
to identify the presence of transgenes. Alternately, the
excision of genomic inserts from BACs based on pBe-
loBAC11 vector derivatives byNotI digestion provides
a few hundred vector base pairs at both ends (384 bp
and 247 bp surrounding theHindIII cloning site) that
can subsequently be used as tags or for PCR analysis.
Similar to YACs, the presence of vector sequences in
the microinjected BAC constructs does not seem to
have an overt effect on the expression profiles of BAC
transgenes, provided the size of the cloned genomic
insert can accomodate most of the locus regulatory
sequences (Kaufman et al., 1999).

When unique sites are not available therecA-
assisted restriction endonuclease (RARE) technique
may be employed to generate unique sites suitable for
BAC insert excision (Boren et al., 1996; Nielsen et al.,
1998; Nielsen et al., 1999). Alternatively, the pres-
ence of a uniqueloxPsite in BAC/PAC-derived clones
has been used for the effective Cre recombinase-
mediated linearisation of transgenes before microin-
jection (Mullins et al., 1997).

BAC DNA can be efficiently stabilised in microin-
jection buffer by the addition of salt (usually so-
dium chloride) and polyamines, as reported for YACs

(Schedl et al., 1993a), although polyamines can be
excluded without obvious effects, presumably due to
the smaller size of BACs (Kaufman et al., 1999; Yang
et al., 1997).

BAC transgenic animals have also been pre-
pared via the ES cell route by co-transfection of
BAC transgenes along with a selectable marker, fol-
lowed by the production of chimaeric mice that
are bred to create transgenic lines (Kaufman et al.,
1999).

Transgenic animals carrying either BAC or PAC
transgenes have been generated with comparable effi-
ciencies to that of standard constructs (5–20% of new-
born animals). As with YACs, most of BAC transgenic
animals carry a limited number of integrated transgene
copies (<5), but up to 13 copies of a BAC transgene
have been reported (Nielsen et al., 1997). There are
not many studies addressing copy number-dependent
expression of BAC transgenes. Nevertheless, position-
independent and copy-number-related expression has
been shown in goatα-lactalbumin BAC transgenes in
mice (Stinnakre et al., 1999).

Unfortunately, not all BAC/PAC transgenes integ-
rate in the host genome as intact DNA molecules.
Again, similar to YACs, rearrangements and insertion
of fragmented transgenes can occur with BACs (Ant-
och et al., 1997; Kaufman et al., 1999) suggesting that
rearrangement appears to be primarily related to trans-
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gene size, irrespective of YAC or BAC origin (Kauf-
man et al., 1999). Therefore, detailed Southern/PCR
analysis of integrated BAC transgenes is recommen-
ded before further experiments are undertaken with
selected transgenic lines.

In conclusion, BAC/PAC constructs closely mimic
the optimal performance in transgenesis achieved with
YACs (McCormick & Nielsen, 1998; Huxley, 1998;
Kaufman et al., 1999; Heintz, 2000; Camper & Saun-
ders, 2000). The choice of vectors should be based
primarily on the technical skills of the laboratory and
the expected size of the expression domain to be
analysed in transgenic experiments. Relatively small
genes (<100 kb) can be analysed with BACs/PACs,
whereas bigger loci require the use of YACs. A
comparison of YAC versus BAC/PAC transgenesis
is presented in Table 3, indicating the benefits and
problems associated with both systems.

Modification of YAC/BAC/PAC transgenes

BACs and PACs are more convenient to propagate and
purify than YACs because they do not require specific
methods other than adaptations of existing protocols,
commonly applied to routine work with plasmids in
bacterial cells (Sternberg, 1999; Birren et al., 1999).
In contrast, YACs require unique and more tedi-
ous methods along with the need to become familiar
with yeast cells, features which might have prevented
their rapid dissemination and implementation in some
laboratories (Green et al., 1999).

In spite of such apparent disadvantages, YACs
have documented advantages over BACs with regard
to their modification capabilities and the ease with
which these are achieved. The yeast system offers an
unlimited variety of modifications that can be intro-
duced in YACs using standard protocols that exploit
the efficient yeast endogenous homologous recombin-
ation system (Schlessinger, 1990; Monaco & Larin,
1994; Peterson, 1997b; Green et al., 1999).

In bacteria, a number of innovative methods have
been developed recently to retrofit specific markers in
BACs and PACs (Mejia & Monaco, 1997) and, re-
markably, for easier mutagenesis of BACs and PACs
(Yang et al., 1997; Zhang et al., 1998; Nielsen et al.,
1998; Jessen et al., 1998; Chiu et al., 2000; Yu et al.,
2000), opening the possibility of extending the range
of BAC/PAC transgenic approaches to a similar de-
gree of complexity as that of YAC transgenics. In this

section we will discuss the modification potential of
YACs compared to that of BACs and PACs.

Fragmentation vectors provide new telomeres
along with selectable markers and have been used in
YACs for a variety of purposes. These YAC vectors
have been utilized to reduce the size of YAC constructs
at precise locations, thereby generating a nested set of
deletion derivatives (Montoliu et al., 1996; Wutz et al.,
1997), to add selectable markers such as a neomycine-
resistance gene (Lamb et al., 1993) or to combine size
reduction with the addition of new features such as
an amplification system (Schedl et al., 1993a; Fuji-
wara et al., 1997) or a reporterlacZ gene (Heard
et al., 1996). Modified YACs are produced by targeted
disruption of the original construct by homologous
recombination driven in yeast cells. In some cases,
homologous target sequences might not be known or
available, but fragmentation can still be performed,
at random locations, via repetitive sequence elements
(i.e., B1 elements in the mouse genome; Zweigerdt
et al., 1997; Lakshmanan et al., 1998). Following
this approach, a YAC deletion series can be easily
generated covering hundreds of kilobases in a single
yeast transformation experiment, thus permitting the
functional identification of distal regulatory elements
(Zhou et al., 1998) or functional domains (Lee et al.,
1999). With transgene DNA of human origin, an
equivalent strategy can be devised using YAC frag-
mentation vectors that includeAlu repeat sequences
(Wunderle et al., 1998; Fujiwara et al., 1999b).

Modifications (i.e., deletions) at internal YAC
sequences can also be performed by substituting the
targeted sequence with a yeast selectable marker
surrounded by neighbouring homologous sequences
(Montoliu et al., 1996). Such YAC replacement vec-
tors can also be used for the targeted insertion of
heterologous sequences (Fujiwara et al., 1999a). How-
ever, these replacement type vectors leave behind the
yeast selectable marker within the body of the YAC
insert, which might interfere later with proper trans-
gene expression. A cleaner alternative is to use the
‘pop-in/pop-out’ method in yeast cells, which uses
an integrative type of plasmid vectors called YIP
(yeast integrative plasmid). Two rounds of homo-
logous recombination are required to substitute the
original sequence of a YAC with the desired mutation,
without retaining the selectable marker. This elegant
and powerful approach has been used in a variety of
cases: to introduce point mutations at precise loca-
tions within a YAC (Duff et al., 1994; McCormick
et al., 1995. 1997a; Lamb et al., 1997), to reproduce
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trinucleotide repeat characteristics of a set of human
diseases (Hodgson et al., 1999; La Spada et al., 1998;
Cemal et al., 1999), to generate minor deletions at
regulatory sequences of the YAC-borne gene (Giraldo
et al., 1999), and to introduce a reporter gene (i.e.,
lacZ) by transcriptional fusion with the targeted gene
(Hiemisch et al., 1997; Ainscough et al., 1997) or
via IRES-facilitated transcription (Vassaux & Huxley,
1997).

Studies of humanβ-globin locus gene regulation
during development have benefitted largely from the
introduction of precise mutations by homologous re-
combination techniques in yeast cells and the ana-
lysis of modified YAC transgenes in mice (Peterson
et al., 1998). Some of the engineered modifications
(i.e., amino-acid exchange, 5′ breakpoints, internal
deletions) correspond to equivalent defects found in
patients affected by diverse forms ofβ-thalassemia
syndromes and related human diseases (Peterson et al.,
1995; Calzolari et al., 1999). Moreover, a large num-
ber of new mutations have been generated in human
β-globin YAC transgenes to address the role of spe-
cific sequences (i.e. LCR) in the regulation of gene
expression during development. These modifications
include deletion of regulatory sequences (Peterson
et al., 1996; Liu et al., 1997; Navas et al., 1998;
Calzolari et al., 1999), inter-replacement of regulatory
elements (Bungert et al., 1995) and alterations in the
gene order or orientation of key regulatory sequences
(Tanimoto et al., 1999).

The unlimited potential of YAC modifications is
best illustrated by the generation of transgenic mice
producing human antibodies (Mendez et al., 1997).
In this report, the authors built megabase-sized YACs
containing large contiguous genomic fragments cor-
responding to unrearranged human heavy and light
immunoglubulin genes using homologous recombin-
ation in yeast. Final YAC constructs were obtained by
step-wise fusion, via recombination, of smaller and
partially overlapping YACs (Mendez et al., 1997).

BACs have been more difficult to modify than
YACs, although it is likely that the progressive de-
velopment of new techniques in this rapidly evolving
field will see greater ease of modification. The main
reason for difficulties in modifying BACs and PACs
is that bacterial host cells arerecA deficient, to pre-
vent undesired recombination and rearrangements and
to favour insert stability. Thus, several recombina-
tion pathways in bacteria have been explored that are
normally absent in BAC host cells. Their utilization
requires either the transfer of the BAC to a suitable

bacterial strain or the exposure of the BAC-containing
cell to the specific recombination machinery. Often
these systems are not understood well and are prone to
producing unexpected alterations that might give rise
to the generation of erroneously modified BAC/PAC
clones. Detailed structural analysis of resulting BAC
clones is strongly recommended for the following
methods.

The first describing a BAC modification system
by homologous recombination in bacterial cells was
that of Yang et al., (1997). Their approach is ana-
logous to the yeast ‘pop-in/pop-out’ strategy but is
more complex, and has been used to target the in-
corporation of an IRES-lacZ reporter gene at precise
internal locations within a BAC transgene. The ex-
pected homologous recombination event occurred at
frequencies lower than those found in equivalent ex-
periments with YAC constructs (Yang et al., 1997).
This modification approach, based on the transient
expression ofrecA protein, has been reproduced by
several independent groups with BACs and P1 clones
(Yu et al., 1999; Zuo et al., 1999; Payne et al., 1999).
A simpler alternative was developed that uses the ca-
pacity of two properly oriented short DNA sequences
(Chi-sites) to trigger the transfer of a DNA fragment
located between them to homologous DNA by means
of the recBCD pathway (Jessen et al., 1998). The
authors showed that most BAC modified clones incor-
porated the desired homologous recombination event
(a transcriptional fusion of alacZ reporter gene) in the
generation of transgenic zebrafish (Jessen et al., 1998).
The same team reproduced chi-stimulated homolog-
ous recombination using a PAC clone with similar
success (Jessen et al., 1999). Further experiments
are necessary before the potential of this promising
technique can be established.

A third modification system has been developed
based on therecE and recT recombination pathway
(Zhang et al., 1998). This approach, known as ‘ET-
cloning’ uses homologous recombination driven by
short sequences common to the BAC/PAC and the
targeting vector. The authors showed the efficient
modification of a P1 clone by targeting the insertion of
an antibiotic resistance gene (Zhang et al., 1998). An
updated version of the ‘ET-cloning’ method specially
suited for the modification of BACs was recently re-
ported, based on the functional counterparts ofrecE
andrecT proteins of bacteriophageλ (Muyrers et al.,
1999). The combination of homologous recombina-
tion techniques coupled with the use ofFRT/FLP and
loxP/CRE site-specific recombination systems allows
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the excision of the selectable marker employed to
detect the very rare homologous recombination event
(Buchholz et al., 1996; Zhang et al., 1998; Muyers
et al., 1999). Despite the elegance and potential of the
‘ET-cloning’ method it has proven difficult to master
in a number of laboratories that failed to obtain the
desired BAC modification at the expected frequencies
that were reported by the original authors. A possible
solution was provided by placing all recombinogenic
proteins under the control of a tightly regulated and
inducible promoter, diminishing the risk of overex-
pression and the appearance of unwanted rearrange-
ments (Narayanan et al., 1999). Using this modified
protocol, called ‘GET recombination’, the authors
could efficiently target the integration of a selectable
marker (Narayanan et al., 1999), and the insertion of
an EGFP reporter cassette within a 200 kb BAC car-
rying the humanβ-globin locus (Orford et al., 2000).
The targeted insertion of the EGFP cassette also in-
volved a series of deletions within theβ-globin locus
(up to 44 kb). Comparable results have been obtained
with a BAC containing the mousewhey-acidic protein
(WAP) gene that has been modified by the targeted
insertion of a reporter secreted alkaline phosphatase
gene (SEAP, Clontech) using ‘GET recombination’
(Aguirre & Montoliu, unpublished). The unlimited po-
tential of the ‘GET recombination’ technique has been
demonstrated by a recently developed method that al-
lows the introduction of point mutations without leav-
ing behind any operational sequences (Nefedov et al.,
2000), analogous to the ‘pop-in/pop-out’ strategies ap-
plied in YACs and BACs. In this case, the tetracycline
resistance gene (TetR) has been used for both posit-
ive and negative selection in two consecutive rounds
of homologous recombination. Using this technique,
one of the most commonβ-thalassaemia mutations has
been introduced into the intactβ-globin locus present
in a BAC (Nefedov et al., 2000).

Another modification system has been proposed
recently for the targeted mutagenesis of BAC/PAC
clones, based on the recombinogenic function
provided by a defectiveλ prophage (Yu et al., 2000).
Other mutagenesis methods, not using homologous
recombination techniques, have been evaluated in-
cluding the use of RARE cleavage in order to generate
5′ and 3′ BAC/PAC deletion derivatives (Nielsen et al.,
1998), and the use of random-insertion mutagenesis
using a transposon-mediated system (Brune et al.,
1999).

Finally, YAC-shuttle vectors have been applied to
convert P1 clones and PACs into YACs, to facilitate

further modification using the yeast homologous re-
combination system (Chiu et al., 2000; Poorkaj et al.,
2000). Conversely, methods have been established to
transform standard linear YACs (up to 250 kb) into
circular YACs that can also be propagated inE. coli
as BACs, thereby facilitating sequencing and func-
tional analysis of genomic regions (Cocchia et al.,
2000).

Perspectives

Despite the differences between YAC and BAC/PAC
transgenesis approaches, both are associated with op-
timal performance in transgenic experiments. The size
of their genomic inserts, ranging from less than 100 kb
to more than 1 Mb, normally guarantees the inclu-
sion of most regulatory sequences that are relevant for
the faithful regulation of a gene. Therefore, artificial
chromosome-type transgenes are usually expressed in
appropriate spatial- and temporal-specific manners.

At present, YACs are much easier to modify than
BACs/PACs, though more difficult to handle. The
ability to easily retrofit BAC/PAC clones is a great
challenge for the immediate future. Nonetheless, due
to the relevance of BACs and PACs in genome re-
search and functional genomics, it is likely that this
situation will change, once established and reprodu-
cible protocols are disseminated within the scientific
community. Artificial chromosome transgenesis has
been fundamental for the isolation of candidate genes
by complementation of mutations or alterations in the
phenotype, and the generation of improved animal
models of human genetic diseases. Large contiguous
chromosomal fragments can be functionally scanned
by transgenic approaches using a set of overlapping
YAC/BAC/PAC clones spanning the region (i.e. Smith
& Rubin, 1997; Frazer et al., 1997; Zhu et al., 2000).
The identification of genes associated with known
quantitative trait loci (QTL) has also been shown to be-
nefit from artificial chromosome transgenesis (Symula
et al., 1999). These techniques are expected to have a
major impact on the analysis of gene expression and
function in systems with a high degree of complexity,
such as the mammalian central nervous system, in
which standard loss-of-function approaches usually do
not provide a clue to understand the role of a gene.
In this respect, gene dosage experiments produced
by increasing overexpression of transgenes within
YAC/BAC/PAC clones will be instrumental for the
correct understanding of gene function (Heintz, 2000).
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Finally, the benefits of artificial chromosome transgen-
esis will be exported to biotechnological applications,
such as the production of pharmaceutical or nutriceut-
ical proteins in the mammary gland of transgenic
animals (Zuelke, 1998; Fujiwara et al., 1999a).

In 1993, one of the first reviews discussing the
future potential of artificial chromosome transgenesis
concluded, with some degree of prudence, that ‘bigger
is probably better’ (Forget, 1993). Indeed, seven years
later, after having witnessed the enormous develop-
ment of these techniques one can undoubtedly state:
‘size matters’ in animal transgenesis.

Note added in proof

Since submission and acceptance of this review two
alternative methods have been described for engin-
eering BACs by homologous recombination [Lalioti
and Heath (2001) Nucleic Acids Res. 29: e14; Swam-
inathan et al. (2001) Genesis 29: 14–21].
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